Canine heupdysplasie screening: vergelijking van vroege evaluatie met definitieve beoordeling bij 231 honden met Fédération Cynologique Internationale A en B

Canine heupdysplasie screening: vergelijking van vroege evaluatie met definitieve beoordeling bij 231 honden met Fédération Cynologique Internationale A en B

mei 18, 2020 0 Door admin


CBD Olie kan helpen bij artrose. Lees hoe op

Huile de CBD peut aider avec l’arthrose. Visite


  • Loading metrics

Open Access


Research Article

  • Roxana Merca, 
  • Barbara Bockstahler, 
  • Aldo Vezzoni, 
  • Alexander Tichy, 
  • Simona Boano, 
  • Britta Vidoni




This study aimed to verify if a significant difference exists between parameters in the early evaluation of normal and near-normal hip joints, to evaluate the influence of age and breed on the parameters, and to clarify the usefulness of a total score for differentiating between Fédération Cynologique Internationale (FCI) grade A and B hips.


A total of 231 dogs were classified according to whether they had FCI A or B hips at adulthood, with measurements obtained at 14–28 weeks of age. The total score was calculated by the summation of the following quantitative parameters: angle of subluxation (AS), angle of reduction (AR), laxity index (LI), and dorsal acetabular rim slope (DARS). Logistic regression analysis was performed to establish the probability of the study population to develop an FCI B hip based on the total score. This was repeated for the highest score in combination with the worst-rated hip and once more for breeds.


No correlation between age and the parameters was found in the cohort, or for FCI A and B. The values of all the parameters were significantly lower in the FCI A group than in the FCI B group (AR: 4.42° ± 6.0° vs 7.62° ± 7.2°; AS: 0.45° ± 1.9° vs 1.55° ± 3.8°; LI: 0.32 ± 0.1 vs 0.36 ± 0.1; DARS: 3.30° ± 1.8° vs 3.77° ± 1.9°; TS: 11.47 ± 8.3 vs 16.65 ± 10.9). Labrador Retrievers and Golden Retrievers showed significant differences between parameters for both FCI grades. The range, where FCI A and B hips can be predicted on the basis of the total score, was different when assessed for the entire cohort, Labrador Retrievers, and Golden Retrievers.

Clinical significance

Our results show that even in normal and near-normal hips, the parameters significantly differed in the early evaluation. Moreover, cutoff values should be set for different breeds in the prediction of the FCI grade during early evaluation for a better breeding selection regarding canine hip dysplasia, one of the most common orthopedic diseases among large and giant breed dogs.

Citation: Merca R, Bockstahler B, Vezzoni A, Tichy A, Boano S, Vidoni B (2020) Canine hip dysplasia screening: Comparison of early evaluation to final grading in 231 dogs with Fédération Cynologique Internationale A and B. PLoS ONE 15(5): e0233257.

Editor: Silvia Sabattini, University of Bologna, ITALY

Received: May 19, 2019; Accepted: May 2, 2020; Published: May 18, 2020

Copyright: © 2020 Merca et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the manuscript and its Supporting Information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.


Canine hip dysplasia (CHD) is one of the most common non-traumatic orthopedic diseases in large and giant breed dogs [1,2]. The pathogenic process involves hip laxity, incongruence of the coxofemoral joint, synovitis, abnormal progression of endochondral ossification and development of osteoarthritis (OA) [3,4], manifesting as restricted joint mobility, pain, and lameness. Etiological roles for genetic and environmental factors have been described in the CHD literature. Some influencing factors such as physical activity, dietary factors or body weight can be readily modulated by the owner [2,59], but not other factors such as an anomalous inclination of the dorsal acetabulum or hormonal influences [913]. Physical and therapeutic interventions increase the cost of lifetime care (for both pet and working dogs) and, if unsuccessful, raise the option of euthanasia [13,14].

Although numerous CHD screening programs that allow phenotypic selection are common in breeding clubs, only moderate success has been achieved for the improvement of the incidence of CHD [1522]. The distinction between Fédération Cynologique Internationale (FCI) grade A and B hips is given by the Kennel clubs through their breeding regulations. In several breeds, dogs that have been evaluated as having FCI B hips are only allowed to pair with dogs that have been evaluated as having FCI A hips [23]. To our knowledge, no studies have specifically focused on the development of arthrosis in FCI A hips; however, Belgian shepherd dogs with borderline hip dysplasia have been shown to have altered joint kinematics [24]. Early evaluation (EE) of the hip joint remains a key clinical predictor of the outcome at the final evaluation performed upon skeletal maturity [9,1419,25]. Thus, EE enables decision making for early surgical preventive intervention in growing dogs [1,2629] or for timely exclusion from breeding or training programs. However, no evidence-based consensus has been reached about the precise method of EE, or the parameter profile or hierarchy for such decision making [30]. Furthermore, the thresholds and breed variations of the parameters for the prediction of the final FCI score remain undefined [19,31].

The objective of this retrospective study was to verify whether EE can reveal differences in the parameters, including laxity index (LI), dorsal acetabular rim slope (DARS), femoral head center (FHC), angle of subluxation (AS), and angle of reduction (AR), between hips later classified as FCI A or B. The study also evaluated the influences of age and breed on the different parameters, and verified the probability of differentiating between later FCI A and B classifications to facilitate early breeding selection and training purposes.

Materials and methods

The medical records in Clinica Veterinaria Vezzoni were searched for dogs with data obtained at 14–28 weeks of age at EE, without surgical preventive intervention for CHD, with FCI A or B hip at 12 months or older, and both hips evaluated separately. A total of 231 dogs (462 evaluated hips) were included in the study. The study population included mixed- and pure-breed dogs. For the evaluation of breed influence, the cohort was subdivided into breeds. All the groups with

Clinical and radiographic examinations were performed either by a surgery or imaging resident or by a board-certified surgeon. For all the dogs, EE was performed under deep sedation and included a quantitative evaluation of the Ortolani sign based on the measurements of AS and AR. The measurements were performed in dorsal recumbency using the Slocum Electronic Goniometer (Slocum Enterprises Inc., Eugene, OR, USA).

Radiographs were taken for the extended ventrodorsal, dorsal acetabular rim and distraction views [32]. The resulting parameters included LI [33], DARS [34] and FHC [35]. FHC was evaluated in the ventrodorsal view and classified as medial, superimposed, or lateral to the dorsal acetabular rim. DARS was obtained using the technique described by Slocum [34]. The distraction view was obtained as originally described by Badertscher [32], using the Vezzoni modified Bardertscher distension device (VMBDD) [33,36]. LI was measured in accordance with the method used by Smith and colleagues [8,33,3739]. After reaching skeletal maturity, all the dogs underwent CHD assessment in accordance with FCI standards [40],by a veterinarian with FCI board certification. CHD assessments according to FCI standards have been performed in the ventrodorsal radiographic view.

Data were evaluated using the SPSS version 24 statistical software (IBM Corp., Armonk, NY, USA). A total score (TS) was obtained, similar to the global index published before [19], represented by the sum of all quantitative parameters evaluated [AS AR (LI × 10) DARS], where the LI is multiplied by 10 to account for its value being always below 1. The FHC parameter was qualitative and could therefore not be included in the TS. Dogs that tested negative for the Ortolani sign were included in the statistical evaluation, with a value of 0 for both AR and AS.

The study population was divided into two groups (A and B) according to FCI grade. Logistic regression analysis was performed to establish the probability of development of grade B hips based on the TS. The left and right hips were evaluated separately. This was repeated for the highest score of each dog in combination with the worst-rated hip of each dog. Thus, in all the logistic regression analyses, the statistical unit was the dog. In addition, we performed these analyses for breed groups with >10 dogs. Odds ratios, including 95% confidence intervals, were calculated for the logistic regression using the highest TS of each dog.

The Student t test was used for the comparisons of AS, AR, LI, and DARS between the FCI A and B groups. A Pearson correlation analysis was performed to assess the correlation between age and the parameters. The chi-square test was used to evaluate the differences in FHC between groups A and B. The effects of group and breed on the different parameters were analyzed using a general linear model with the Tukey alpha correction procedure as a post hoc test for breed. The assumption of normal distribution was assessed using the Kolmogorov-Smirnov test. A p value of



The female-to-male ratio was 1:1 (50.6% females and 49.4% males). The mean age was 20.7 ± 3.4 weeks at EE and 64.3 ± 20.6 weeks at final FCI examination, with 303 FCI A and 159 FCI B hip joints. The most frequently represented breeds were Labrador Retriever (n = 93, 40.3%), Border Collie (n = 36, 15.6%), Golden Retriever (n = 36, 15.6%), and Bernese Mountain Dog (n = 31, 13.4%). A total of 216 hips tested positive for the Ortolani sign, with AR ranging from 5° to 30°. The values (mean ± SD) of the parameters in the entire study population were as follows: AR, 5.52° ± 6.6°; AS, 0.83° ± 2.7°; LI, 0.33 ± 0.1; DARS, 3.46° ± 1.8°; and TS, 13.25 ± 9.6. The FHC was located medial to the acetabular rim in 408 hips (88.3%), superimposed in 52 (11.2%) and lateral to the acetabular rim in 2 (0.4%).

Correlation analysis

While no correlation was found between the age of the subjects and the evaluated parameters, a significant correlation was found among the evaluated parameters (Table 1).

Correlations of the FCI A and B groups in the entire population

The values (mean ± SD) of the parameters evaluated at EE for the hips with adult grades of FCI A and B were as follows: AR, 4.42° ± 6.0° vs 7.62° ± 7.2°; AS, 0.45° ± 1.9° vs 1.55° ± 3.8°; LI, 0.32 ± 0.1 vs 0.36 ± 0.1; DARS, 3.30° ± 1.8° vs 3.77° ± 1.9°; and TS, 11.47 ± 8.3 vs 16.65 ± 10.9. In the FCI group, the FHC at EE was located medial to the acetabular rim in 278 hips (91.7%), superimposed in 24 (7.9%), and lateral to the acetabular rim in 1 (0.3%). In the FCI group, the FHC at EE was located medial to the acetabular rim in 130 hips (81.8%), superimposed in 28 (17.6%), and lateral to the acetabular rim in 1 (0.6%). The values of all the parameters tested at EE were significantly lower in the FCI A than in the FCI B group (p p = 0.01 for DARS). In addition, the FCI A group had significantly more medially located FHCs (p Fig 1. For better visualization, the values of the parameters of the FCI A and FCI B hips are summarized in Table 2.


Fig 1. Values of the parameters at the time of early evaluation.

1: AR (°), 2: AS (°), 3: LI, 4: DARS (°), and 5: TS. The blue bars represent the entire population: the red bars, the FCI A group: and the green bars, the FCI B group. * Significant difference in the evaluated parameters between the FCI A and B groups.

Differences between the breeds

The Labrador Retrievers and Golden Retrievers showed significant differences in all the parameters between the FCI grades. In particular, the FCI B group had significantly higher AS in both breeds (p = 0.03 and p = 0.04, respectively), LI (p = 0.01 and p = 0.01, respectively), and TS (p p = 0.03, respectively). Among the Labrador Retrievers, the FCI B group had significantly higher AR and DARS (both p Table 3.

The Border Collie group showed negative correlations between age and AR (r = −0.33, p = 0.03) and TS (r = −0.34, p = 0.027) in the FCI A group. By contrast, the Labrador Retrievers showed positive correlations between age and AR (r = 0.20, p = 0.02) and TS (r = 0.17, p = 0.04) in the FCI A group. Only the Golden Retrievers showed a positive correlation between age and LI (r = 0.44, p

The between-breed comparisons in the FCI A group showed that the AR and TS of the Labrador Retrievers were significantly higher than those of the Bernese Mountain Dogs (p p p p

Probability of prediction of FCI A and B hips

Fig 2 shows the predicted probabilities for FCI A or B hips according to the TS of the whole cohort and separately for the two breeds that showed significant differences in TS, namely the Labrador and Golden Retriever. For the entire cohort, TS had a high influence on the final FCI grade (p Table 4 provides the results of the logistic regression analysis in more detail.


Fig 2. Probability curves of the entire population, Golden Retriever, and Labrador Retriever.

Probability graph for the entire population (1), Golden Retrievers (2), and Labrador Retrievers (3): The dark and light dotted lines represent the probabilities for the development of FCI A and B hips, respectively. The green square marks the zone in which the probability is between 45% and 55%. In this zone, the score range from 22 to 28 for the entire population, from 6 to 14 for the Golden Retrievers, and from 28 to 35 for the Labrador Retrievers.

Fig 2 highlights the TS range for which prediction is difficult and wherein A and B overlap. This uncertain range is differs when considering the entire cohort (TS, 22–28), Labrador Retrievers (TS, 28–35), and Golden Retrievers (TS, 6–14).


The objective of this study was to verify whether EE can reveal differences in the evaluated parameters in skeletally immature hips [41] that are classified as FCI A and B in adult dogs. The entire multi-breed cohort and Labrador Retriever breed group showed that hip joints classified as FCI B had significantly higher AS, AR, LI, DARS, and TS at EE. The Golden Retriever breed group showed significantly higher AS, LI, and TS at EE only for the FCI B hips. As only normal and near-normal hips were evaluated, only minimal differences were expected. Another key finding of our study was that for the entire cohort, the FHC was significantly more often located medial to the acetabular rim in the FCI A hips.

The study also evaluated the influences of age and breed on the different parameters, and showed that in the entire cohort, age had no influence. In the breed groups, some influences were observed for both FCI grades. In the Border Collie FCI A subgroup, the correlations of age to AR and TS were negative, possibly because the breed is not highly predisposed to CHD. Meanwhile, with increased age, the AR and TS of the subgroup seemed to be decreased, showing a lower score in the measurements performed to quantify the joint laxity. To the best of our knowledge, no study has been conducted on CHD predisposition in this particular breed. By contrast, the Labrador Retriever FCI A subgroup showed positive correlations between age, and AR and TS, possibly reflecting the predisposition of this breed to an increased hip laxity and, subsequently, to CHD. The Golden Retriever FCI B subgroup showed a positive correlation between age and LI. This is contrary to the prevailing logic that age and LI should be negatively correlated, as hip laxity decreases over time due to capsular tightening and fibrosis [4,42], but is in concordance with a recent study [43]. The short period between the EE and the final examination in this study did not provide enough time for the development of capsular tightening of fibrosis [44]. An alternative explanation would be that in juvenile patients with a transitional coxofemoral hip joint, synovitis (even at low severity) can lead to increased laxity [3,4]. These aspects should be considered in subsequent studies with high number of cases and precise analysis of the broad array of etiological factors (i.e., muscle mass, growth rate, and environmental factors). Similar to our findings that age has a different correlation to laxity, a recent study [43] showed significant variations in DI values in dogs between 4, 6, and 12 months of age. Taroni et al. found that this parameter increased between 4 and 6 months of age but decreased between 6 and 12 months of age.

The most noteworthy differences observed in the evaluated parameters in this study were between the Labrador Retriever and Golden Retriever breed groups. This could be an artifact of our study cohort’s overrepresentation of the former breed; however, the latter breed is similar in size to the other two breeds examined (Bernese Mountain Dog and Border Collie). Nonetheless, the differences observed between the measured parameters in all the breeds were statistically relevant for hips that were not significantly different from a pathological standpoint (i.e., normal and near-normal hips) and indicate the importance of differentiating between breeds. It is still intriguing that Labrador Retrievers showed distinctive differences, which may indicate that EE prediction is more readily adoptable to this breed in particular.

The features of FCI A and B hips are very similar, which makes the distinction between them difficult. Our results suggest that using a TS instead of the single parameters in the EE, seems to improve the possibility of differentiating between these two grades according to differences in the probability curves constructed for the entire cohort, Golden Retriever, and Labrador Retriever. This is in accordance with a previous study [19] that applied the parameters to a global predictive score. Collectively, these findings confirm that several parameters are needed to predict CHD development [15,18,19,31,38,43,45]. Similarly to the previous study [19], our stud demonstrated that the TS summarized all the measured values and, up to a certain score, showed a predictive ability. The TS range where the probability was almost equal for predicting FCI A and B hips represents its weakness. This range was different for the entire cohort, Labrador Retrievers, and Golden Retriever. For the entire cohort and Labrador Retriever group, the distinctive range is sufficiently large to predict an FCI A hip; for Golden Retrievers, the indistinctive range is large, leaving only a small range for accurate prediction of the development of FCI A hip. Thus, for the Golden Retrievers, either differentiating between FCI A and FCI B is not possible when the TS is low or only prediction of FCI B or worse is possible when the TS is >20; prediction of an FCI A hip is uncertain with a low TS. This result also agrees with the previous study wherein the probability curves were calculated for all FCI grades [19]. A recent study showed that measurements in the distraction view, performed in the EE, can predict, FCI A, B or C in adult dogs [31], but are not accurate predictors of FCI grade at 12 months of age. In this study, 96% of the hips wi De afleidingsindex van

Onze resultaten met hogere parameterwaarden voor FCI B-heupen komen overeen met eerder gepubliceerde resultaten [ 18 , 19 ]. Sommige waarden die we bij EE verkregen voor FCI A- en FCI B-heupen, zoals de gemiddelde AR van respectievelijk 4,42 ° ± 6,0 ° en 7,62 ° ± 7,2 °, waren over het algemeen lager dan de AR van 15 ° in de vorige onderzoek [ 19 ]. De vorige studie gebruikte een opmerkelijk kleinere groepsgrootte [4-11 honden] en sloot honden die negatief testten op het Ortolani-teken uit van de statistische analyse. De gemiddelde AS in ons onderzoek was analoog aan die beschreven in het vorige onderzoek [ 19 ], en de gemiddelde LI in ons onderzoek was vergelijkbaar met de gepubliceerde DI-waarden in andere onderzoeken [ 19 , 46 ]. Voor LI bevestigden onze bevindingen niet alleen de conclusie van Smith et al. dat honden met een DI van 0,3 al dan niet degeneratieve gewrichtsaandoeningen ontwikkelen [ 38 ] maar ben het ook eens met een recent onderzoek dat heeft vastgesteld dat een drempel van 0,58 voor DI de FCI A-, B- en C-heupen [ 31 ] nauwkeurig kan voorspellen. De LI-waarden in de huidige studie kunnen worden vergeleken met de DI-waarden in de vorige studies, aangezien een vergelijkbare interobserver-overeenkomst had kunnen worden aangetoond [ 33 ]. Een andere studie [ 47 ] met 313 honden vond een lage tot matige correlatie tussen de resultaten van het Ortolani-teken en de FCI-heupgraad. Het Ortolani-teken werd positief getest bij 31 (12,3%) van de 252 honden die werden geclassificeerd met een FCI A- of B-heup. In tegenstelling tot onze studie gebruikte de vorige studie alleen het Ortolani-teken als een kwalitatieve meting, zonder de resulterende laksheid in de AR te kwantificeren. De honden die op het Ortolani-teken werden getest, waren in het vorige onderzoek ≥12 maanden oud, terwijl de honden die in ons onderzoek aan metingen waren onderworpen, nog geen volwassen skelet hadden bereikt.

Ons onderzoek heeft beperkingen die onze bevindingen mogelijk hebben beïnvloed. Deze omvatten voornamelijk de niet-uniforme verdelingen van de FCI A- en B-heupen tussen de groepen, met een groter aantal FCI A-heupen, en de beoordeelde rassen (met name het aanzienlijk hoge aantal Labrador Retrievers) en hun FCI A- en B-heupen binnen elke groep. De duidelijke resultaten voor de voorspelling van definitieve FCI A- en B-cijfers en algemene verschillen in parameters tussen FCI A en FCI B in de Labrador Retriever-groep geven de noodzaak aan van onderzoeken met grote homogene groepen om de standaardparameterwaarden te bepalen. De lange tijdsspanne van de EE in deze studie, tussen de 3 en 7 maanden oud, zou een beperking kunnen zijn, hoewel deze de normale klinische routine weerspiegelt. Leeftijd had echter geen invloed op de parameters in ons onderzoek, met uitzondering van de Golden Retrievers met FCI B-heupen. Voor een nauwkeurige schatting van de invloed van leeftijd is verder onderzoek nodig bij een breder scala aan hondenrassen in verschillende levensfasen en groepen die voldoende groot zijn voor statistische analyse. Enkele andere beperkingen waren te wijten aan het retrospectieve karakter van het onderzoek, zoals het feit dat de metingen niet door één enkele onderzoeker zijn uitgevoerd. Desalniettemin hebben LI-metingen een goede herhaalbaarheid en reproduceerbaarheid aangetoond, met een lage intraobserver- en interobservervariabiliteit [ 48 , 49 ].

Onze resultaten geven aan dat rassen zelfs bij normale en bijna normale heupen significante verschillen vertoonden, die de aanleg van sommige rassen voor een hogere heuplaxiteit op jonge leeftijd kan weerspiegelen, wat kan leiden tot degeneratieve gewrichtsaandoeningen [ 2 , 50 ]. Hoewel eerdere studies rassen met een hoger risico op CHD vergeleken met rassen waarvan bekend is dat ze een lage incidentie van CHD hebben [ 39 , 51 ], er zijn meer onderzoeken nodig om duidelijke waarden voor de verschillende rassen vast te stellen.


Als de waarden van de parameters die in de EE worden gebruikt, worden omgezet in een TS, kunnen ze een voorspellende waarde bieden, maar wees voorzichtig, want de TS is sterk afhankelijk van het ras. Daarom kunnen er in het algemeen geen aanbevelingen worden gedaan voor rassen. Verdere studies met meer rassen en grotere steekproeven zijn nodig om een ​​algemene verklaring op te stellen over de relevantie van elke parameter voor individuele rassen. Op basis van de resultaten van ons onderzoek kunnen we alleen het gebruik van verschillende parameters aanbevelen om de heuplaxiteit bij opgroeiende honden te onderzoeken.


  1. 1.              Vezzoni A, Dravelli G, Vezzoni L, Lorenzi MD, Corbari A, Cirla ​​A, et al. Vergelijking van conservatieve behandeling en juveniele schaamsymfysiodese bij de vroege behandeling van heupdysplasie bij honden. Vet Comp Orthop Traumatol. 2008; 21 (3): 267–279. pmid: 18536855
  2. 2.              Smith GK, Lawler DF, Biery DN, Powers MY, Shofer F, Gregor TP, et al. Chronologie van heupdysplasieontwikkeling in een cohort van 48 labrador retrievers die voor het leven worden gevolgd: chronologie van heupdysplasieontwikkeling bij labrador retrievers. Dierenarts Surg. 2012 jan; 41 (1): 20-33. pmid: 23253036
  3. 3.              Lust G. Een overzicht van de pathogenese van heupdysplasie bij honden. J Am Vet Med Assoc. 15 mei 1997; 210 (10): 1443–5.
  4. 4.              Madsen JS. De gewrichtscapsule en gewrichtslaxiteit bij honden met heupdysplasie. J Am Vet Med Assoc. 15 mei 1997; 210 (10): 1463–5. pmid: 9154198
  5. 5.              Krontveit RI, Trangerud C, Sævik BK, Skogmo HK, Nødtvedt A. Risicofactoren voor heupgerelateerde klinische symptomen in een prospectieve cohortstudie van vier grote hondenrassen in Noorwegen. Prev Vet Med. 2012 februari; 103 (2-3): 219-27. pmid: 21982689
  6. 6.              Krontveit RI, Nødtvedt A, Sævik BK, Ropstad E, Trangerud C. Wonen en bewegen gerelateerd risicofactoren geassocieerd met de ontwikkeling van heupdysplasie zoals bepaald door radiografische evaluatie in een prospectief cohort van Newfoundlands, Labrador Retrievers, Leonbergers en Ierse Wolfshonden in Noorwegen. Am J Vet Res. 2012; 73 (6): 838-846. pmid: 22620698
  7. 7.              Greene LM, Marcellin-Little DJ, Lascelles BDX. Associaties tussen trainingsduur, kreupelheid, ernst en bewegingsbereik van het heupgewricht bij Labrador Retrievers met heupdysplasie. J Am Vet Med Assoc. 2013; 242 (11): 1528-1533. pmid: 23683017
  8. 8.              Smith GK, Mayhew PD, Kapatkin AS, McKelvie PJ, Shofer FS, Gregor TP. Evaluatie van risicofactoren voor degeneratieve gewrichtsaandoeningen geassocieerd met heupdysplasie bij Duitse herdershonden, Golden Retrievers, Labrador Retrievers en Rottweilers. J Am Vet Med Assoc. 15 december 2001; 219 (12): 1719–17. pmid: 11767921
  9. 9.              Fries CL, Remedios AM. De pathogenese en diagnose van heupdysplasie bij honden: een overzicht. Can Vet J. 1995; 36 (8): 494. pmid: 7585436
  10. 10.              Sánchez-Molano E, Pong-Wong R, Clements DN, Blott SC, Wiener P, Woolliams JA . Genomische voorspelling van eigenschappen gerelateerd aan heupdysplasie bij honden. Front Genet [internet]. 13 maart 2015 [geciteerd 26 mei 2016]; 6. Beschikbaar vanaf: a>

  11. 11.              Fels L, Distl O. Identificatie en validatie van Quantitative Trait Loci (QTL) voor Canine Hip Dysplasia ( CHD) bij Duitse herdershonden. Barendse W, redacteur. EEN. 6 mei 2014; 9 (5): e96618. pmid: 24802516
  12. 12.              Sánchez-Molano E, Woolliams JA, Pong-Wong R, Clements DN, Blott SC, Wiener P Kwantitatieve mapping van kenmerken van honden voor heupdysplasie bij honden en de daarmee verband houdende eigenschappen bij Britse Labrador Retrievers. BMC Genomics. 2014; 15 (1): 1.
  13. 13.              Broeckx BJG, Coopman F, Verhoeven GEC, Van Haeringen W, van de Goor L, Bosmans T, et al. De prevalentie van negen genetische aandoeningen bij een hondenpopulatie uit België, Nederland en Duitsland. Wade C, redacteur. EEN. 19 september 2013; 8 (9): e74811. pmid: 24069350
  14. 14.              Lust G, Williams AJ, Burton-Wurster N, Pijanowski G, Beck K, Rubin G, et al. Gewrichtslaxiteit en de associatie met heupdysplasie bij Labrador retrievers. Am J Vet Res. 1993 december; 54 (12): 1990-9. pmid: 8116927
  15. 15.              Adams WM, Dueland RT, Meinen J, O’Brien RT, Giuliano E, Nordheim EV. Vroege detectie van heupdysplasie bij honden: vergelijking van twee palpatie en vijf radiografische methoden. J Am Anim Hosp Assoc. 1998; 34 (4): 339-347. pmid: 9657168
  16. 16.              ​​ Adams WM, Dueland RT, Daniels R, Fialkowski JP, Nordheim EV. Vergelijking van twee palpatie, vier radiografische en drie echografische methoden voor vroege detectie van milde tot matige heupdysplasie bij honden. Vet Radiol Ultrasound. 2000; 41 (6): 484–490. pmid: 11130786
  17. 17.              OHLERTH S., BUSATO A., RAUCH M., WEBER U., LANG J. Vergelijking van drie afleidingsmethoden en conventionele radiografie voor vroege diagnose van heupdysplasie bij honden. J Small Anim Pract. 2003; (44): 524-9.
  18. 18.              Vezzoni A, Schramme M. Is een vroege evaluatie betrouwbaar voor de diagnose van heupdysplasie bij honden? In Proceedings of the 12th Orthopaedic Veterinary Congress ESVOT-VOS, München. 2004; 145-51.
  19. 19.              Vezzoni A, Dravelli G, Corbari A, Lorenzi MD, Cirla ​​A, Tranquillo V. Vroege diagnose van heupdysplasie bij honden (CHD). EJCAP. 2005; 15 (2): 173–84.
  20. 20.              Ginja MMD, Silvestre AM, Gonzalo-Orden JM, Ferreira AJA. Diagnose, genetische controle en preventief beheer van heupdysplasie bij honden: een overzicht. Vet J. 2010 Jun; 184 (3): 269-76. pmid: 19428274
  21. 21.              Verhoeven G, Fortrie R, Van Ryssen B, Coopman F.Wereldwijde screening op hondenheupdysplasie: waar Zijn we nu?: Wereldwijde screening op heupdysplasie bij honden. Dierenarts Surg. Jan 2012; 41 (1): 10-9. pmid: 23253035
  22. 22.              Oberbauer AM, Keller GG, Famula TR. Langdurige genetische selectie verminderde de prevalentie van heup- en elleboogdysplasie bij 60 hondenrassen. Loor JJ, redacteur. PLOS EEN. 24 februari 2017; 12 (2): e0172918. pmid: 28234985
  23. 23.              Konterqual_Zwischenbericht_2016_04.pdf.
    • 24.              Bockstahler BA, Henninger W, Müller M, Mayrhofer E, Peham C, Podbregar I. Invloed van borderline heupdysplasie op gewrichtskinematica van klinisch gezonde Belgische herdershonden. Am J Vet Res. 2007; 68 (3): 271–276. pmid: 17331016
    • 25.              Gatineau M, Dupuis J, Beauregard G, Charette B, Breton L, Beauchamp G, et al. Palpatie en dorsale acetabulaire randradiografische projectie voor vroege detectie van heupdysplasie bij honden: een prospectieve studie: vroege detectie van heupdysplasie bij honden. Dierenarts Surg. 2012 Jan; 41 (1): 42-53. pmid: 22188178
    • 26.              Dueland RT, Adams WM, Patricelli AJ, Linn KA, Crump PM. Canine heupdysplasie behandeld door juveniele schaamsymfysiodesis: Deel I: Tweejarige resultaten van computertomografie en distractie-index. Vet Comp Orthop Traumatol. 2010 25 augustus; 23 (5): 306–17. pmid: 20740258
    • 27.              Dueland RT, Patricelli AJ, Adams WM, Linn KA, Crump PM. Canine heupdysplasie behandeld door juveniele schaamsymfysiodesis: Deel II: Twee jaar klinische resultaten. Vet Comp Orthop Traumatol. 2010 25 augustus; 23 (5): 318-25. pmid: 20740257
    • 28.              Vezzoni A, Boiocchi S, Vezzoni L, Vanelli AB, Bronzo V. Dubbel bekken osteotomie voor de behandeling van heupdysplasie bij jonge honden: Vet Comp Orthop Traumatol. 9 september 2010; 23 (6): 444-52. pmid: 20830453
    • 29.              Bernardé A. Juvenile Pubic Symphysiodesis en Juvenile Pubic Symphysiodesis Geassocieerd met Pectineus Myotomie: kortetermijnresultaat in 56 Dysplastische puppy’s. Dierenarts Surg. 2010 februari; 39 (2): 158-64. pmid: 20210962
    • 30.              Coopman F, Verhoeven G, Saunders J, Duchateau L, Van Bree H. Prevalentie van heupdysplasie, elleboogdysplasie en humeruskop osteochondrose bij hondenrassen in België. Vet Rec. 2008; 163: 654-658. pmid: 19043090
    • 31.              Taroni M, Genevois J-P, Viguier E, Pillard P, Livet V, Cachon T, et al. Vergelijking van vroege metingen van de distractie-index, Norberg-hoek op afgeleid zicht en de officiële radiografische evaluatie van de heupen van 215 honden van twee geleidehondenopleidingsscholen. Vet Comp Orthop Traumatol. 2018 nov; 31 (06): 445-51.
    • 32.              Badertscher RR. De halfaxiale positie: verbeterde radiografische visualisatie van subluxatie bij heupdysplasie bij honden. Master Thesys, University of Georgia, USA ,; 1977. 106 p.
      • 33.              Broeckx B, Bogaerts E, Bertal M, Bosmans T, Stock E, Deforce D, et al. Vergelijking van drie methoden om laxiteit in het heupgewricht van de hond te kwantificeren. Vet Comp Orthop Traumatol. 2018; 31 (01).
      • 34.              Slocum B, Devine TM. Dorsale acetabulaire rand radiografisch beeld voor evaluatie van de heup van de hond. J Am Anim Hosp Assoc. 1990; 26 (3): 289-96.
      • 35.              Mark Flückinger. Gestructureerde röntgenfoto’s van heupgewrichten nemen en lezen [internet]. 2007 [geciteerd 11 maart 2019]. Beschikbaar vanaf: http: //www.dysplasie
        • 36.              Vezzoni A, Magin G, Lorenzi MD, PIsani G. Pubic symphysiodesis-klinische ervaringen. Proc — 1st-World-Orthop-Vet-Congr. 5 september 2002; 204–7.
        • 37.              Smith GK, Popovitch CA, Gregor TP, Shofer FS. Evaluatie van risicofactoren voor degeneratieve gewrichtsaandoening geassocieerd met heupdysplasie bij honden. J Am Vet Med Assoc. 1995 1 maart; 206 (5): 642-7. pmid: 7744684
        • 38.              Smith GK, Gregor TP, Rhodes WH, Biery DN. Coxofemorale gewrichtslaxiteit door afleidingsradiografie en de gelijktijdige en prospectieve correlatie met laxiteit, subjectieve score en bewijs van degeneratieve gewrichtsaandoening door conventionele heup-uitgebreide radiografie bij honden. Am J Vet Res. Juli 1993; 54 (7): 1021–42. pmid: 8368595
        • 39.              Smith GK, Biery DN, Gregor TP. Nieuwe concepten van coxofemorale gewrichtsstabiliteit en de ontwikkeling van een klinische stress-radiografische methode voor het kwantificeren van de laxiteit van het heupgewricht bij de hond. J Am Vet Med Assoc. 1 januari 1990; 196 (1): 59-70. pmid: 2295555
        • 40.              Flückiger M. Röntgenfoto’s scoren voor heupdysplasie bij honden – De drie grootste organisaties ter wereld. Eur J Companion Anim Pract. 2007; 17 (2): 135–140.
        • 41.              Lust G, Rendano VT, Summers BA. Canine heupdysplasie: concepten en diagnose. J Am Vet Med Assoc. 1985 15 september; 187 (6): 638–40. pmid: 3910629
        • 42.              Johnston SA. artrose: gewrichtsanatomie, fysiologie en pathobiologie. Vet Clin Small Anim Pract. 1997; 27 (4): 699-723.
        • 43.              Taroni M, Genevois J-P, Viguier E, Carozzo C, Livet V, Baldinger A, et al. Evolutie van radiografische parameters van passieve heuplaxiteit bij honden na 4, 6 en 12 maanden: een onderzoek onder 306 honden. Vet Comp Orthop Traumatol. 2018 sept; 31 (05): 321-6.
        • 44.              Li T. Toenemende dikte en fibrose van het kraakbeen bij acetabulaire dysplasie: een onderzoek naar konijnenmodellen. Chin Med J (Engl). 2010; 123 (21): 3061-3066. pmid: 21162956
        • 45.              Gaisbauer S. Literaturübersicht über die diagnostischen Möglichkeiten der Hüftgelenksdyslasie beim Hund, en verder onder de Berücksichtigung der Hüftgelenkslaxizität. 2012.
          • 46.              Ginja MMD, Gonzalo-Orden JM, Melo-Pinto P, Bulas-Cruz J, Orden MA, San Roman F, et al. Vroege laxiteit van de heup bij het voorspellen van matige en ernstige heupdysplasie bij Estrela Mountain Dog. J Small Anim Pract. 2008 december; 49 (12): 641-6. pmid: 18684138
          • 47.              Ginja MMD, Silvestre AM, Colaço J, Gonzalo-Orden JM, Melo-Pinto P, Orden MA et al. Heupdysplasie bij Estrela-berghonden: prevalentie en genetische trends 1991-2005. Vet J. 2009 nov; 182 (2): 275–82. pmid: 18722145
          • 48.              Bertal M, De Rycke L, Vezzoni A, Polis I, Saunders J, Broeckx B. Technische herhaalbaarheid en reproduceerbaarheid van de stressradiografieën uitgevoerd met het Vezzoni-gemodificeerde Badertscher heupdistributie-apparaat. Vet Comp Orthop Traumatol. 2019 jan; 32 (01): 067–72.
          • 49.              Bertal M, Vezzoni A, Houdellier B, Bogaerts E, Stock E, Polis I, et al. Intra- en inter-waarnemer variabiliteit van metingen van de laxiteitsindex op stressradiografieën uitgevoerd met het Vezzoni-gemodificeerde Badertscher heupdistributie-apparaat. Vet Comp Orthop Traumatol. 2018 juli; 31 (04): 246-51.
          • 50.              Smith GK, Hill CM, Gregor TP, Olson K. Betrouwbaarheid van de heupafleidingsindex in twee maanden oude Duitse herdershonden. J Am Vet Med Assoc. 15 mei 1998; 212 (10): 1560–3. pmid: 9604023
          • 51.              Martin SW, Kirby K, Pennock PW. Canine heupdysplasie: effecten op het ras. Can Vet J. 1980; 21 (11): 293. pmid: 7459792





          Lees Meer